For Example:
[ 2 3 6 ] [ 2 4 5 ]
If A = [ 4 2 1 ] , then the transposed matrix will be AT = [ 3 2 9 ]
[ 5 9 8 ] [ 6 1 8 ]
Properties of Matrices
If A and B are matrices ( with sizes such that the given matrix operations are defined ) and c is a scalar, then the following properties are true.
1. (AT)T = A Transpose of a transpose
2. (A+B)T = AT + BT Transpose of a Sum
3. (cA)T =
c(AT) Transpose of
a Scalar Multiple
4. (AB)T = BTAT Transpose of a Product
Finding the Transpose of a Product
Show (AB)T.
[ 2 7 ]
A = [ 5 8 ] B = [ 2 2 4 ]
[ 1 3 ] [ 6 1 7]
Solution:
[ 2 7 ]
AB = [ 5 8 ] x [ 2 2 4 ]
[ 1 3 ] [ 6 1 7 ]
[ (2)(2) + (7)(6) (2)(2) + (7)(1) (2)(4) + (7)(7)]
AB = [ (5)(2) + (8)(6) (5)(2) + (8)(1) (5)(4) + (8)(7)]
[ (1)(2) + (3)(6) (1)(2) + (3)(1) (1)(4) + (3)(7)]
[ 4 + 42 4 + 7 8 + 49 ]
AB = [ 10 + 48 10 + 8 20 + 56 ]
[ 2 + 18 2 + 3 4 + 21 ]
[ 46 11 57 ]
AB = [ 58 18 76 ]
[ 20 5 25 ]
[ 46 58 20 ]
ABT = [ 11 18 5 ]
[ 57 76 25 ]
No comments:
Post a Comment