Gauss-Jordan elimination is a method of elimination, named after Carl Gauss and Willhelm Jordan. It continues the reduction process until a reduced echelon-form is obtained.
Example:
Use Gauss Jordan Elimination to solve the system.
3x - 5y - 6z = 16
4x - 8y = 12
2x + 4y + 8z =24
[ 3 -5 -6 16 ]
[ 4 -8 0 12 ] 1/3(R1) ---> R1
[ 2 4 8 24 ]
[ 1 -5/3 -2 16/3 ]
[ 4 -8 0 12 ] -4(R1) + R2 ---> R2
[ 2 4 8 24 ]
[ 1 -5/3 -2 16/3 ]
[ 0 -4/3 8 -28/3 ] -2(R1) + R3 ---> R3
[ 2 4 8 24 ]
[ 1 -5/3 -2 16/3]
[ 0 -4/3 8 -28/3] -4/3(R2) ---> R2
[ 0 22/3 12 40/3]
[ 1 -5/3 -2 16/3]
[ 0 1 -6 7 ] -22/23(R2) + R3 ---> R3
[ 0 22/3 12 40/3]
[ 1 -5/3 -2 16/3]
[ 0 1 -6 7 ] 1/56(R3) ---> R3
[ 0 0 56 -38 ]
[ 1 -5/3 -2 16/3]
[ 0 1 -6 7 ] 6(R3) + R2 ---> R2
[ 0 0 1 -19/28]
[ 1 -5/3 -2 16/3]
[ 0 1 0 41/14] 2(R3) + R1 ---> R1
[ 0 0 1 - 19/28]
[ 1 -5/3 0 167/42]
[ 0 1 0 41/14] 5/3(R2) + R1 ---> R1
[ 0 0 1 -19/28]
[ 1 0 0 62/7] a= 62/7
[ 0 1 0 41/14] b= 41/14
[ 0 0 1 -19/28] c= -19/28
No comments:
Post a Comment