(2005, 1) (2006, 2) (2007,3) (2009,4) (2010,10)
Because the given x-values are large, use the translation z = x - 2007 to obtain
(-2, 1) (-1, 2) (0, 3) (2, 4) (3, 10)
This makes the polynomial functions as
p(-2) = a0 + a1(-2) + a2(-2)2 + a3(-2)3
+ a4(-2)4 = a0 - 2a1 + 4a2
– 8a3 + 16a4 = 1
p(-1) = a0 + a1(-1) + a2(-1)2 + a3(-1)3
+ a4(-1)4 = a0 - a1 + a2
– a3 + a4 = 2
p(0) = a0 + a1(0) + a2(0)2 + a3(0)3 + a4(0)4 = a0 = 3p(2) = a0 + a1(2) + a2(2)2 + a3(2)3 + a4(2)4 = a0 + 2a1 + 4a2 + 8a3 + 16a4 = 4
p(3) = a0 + a1(3) + a2(3)2 + a3(3)3 + a4(3)4 = a0 + 3a1 + 9a2 + 27a3 + 81a4 = 10
Then use the Gauss-Jordan Elimination. At the end, the solution is a0=3, a1=29/60, a2=-67/120, a3=1/15. and a4=13/120. This means that p(x) = 3 + 29/60x - 67/120x2 + 1/15x3 + 13/120x4. But because we used z to translate the x-value, the p(x) is now written as 3 + 29/60(x-2007) - 67/120(x-2007)2 + 1/15(x-2007)3 + 13/120(x-2007)4
1 | -2 | 4 | -8 | 16 | 1 |
1 | -1 | 1 | -1 | 1 | 2 |
1 | 0 | 0 | 0 | 0 | 3 |
1 | 2 | 4 | 8 | 16 | 4 |
1 | 3 | 9 | 27 | 81 | 10 |
-1(R1) + R2 ---> R2
-1(R1) + R3 ---> R3
-1(R1) + R4 ---> R4
-1(R1) + R5 ---> R5
-2(R2) + R3 ---> R3
-4(R2) + R4 ---> R4
-5(R2) + R5 ---> R5
1/2(R3) ---> R3
-12(R3) + R4 ---> R4
-20(R3) + R5 ---> R5
1/24(R4)
-60(R4) + R5 ---> R5
1/60(R5) ---> R5
1(R5) + R4 ---> R4
-7(R5) + R3 ---> R3
15(R5) + R2 ---> R2
-16(R5) + R1 ---> R1
3(R4) + R3 ---> R3
-7(R4) + R2 ---> R2
8(R4) + R1 ---> R1
3(R3) + R2 ---> R2
-4(R3) + R1 ---> R1
-2(R2) + R1 ---> R1
1 | -2 | 4 | -8 | 16 | 1 |
0 | 1 | -3 | 7 | -15 | 1 |
1 | 0 | 0 | 0 | 0 | 3 |
1 | 2 | 4 | 8 | 16 | 4 |
1 | 3 | 9 | 27 | 81 | 10 |
-1(R1) + R3 ---> R3
1 | -2 | 4 | -8 | 16 | 1 |
0 | 1 | -3 | 7 | -15 | 1 |
0 | 2 | -4 | 8 | -16 | 2 |
1 | 2 | 4 | 8 | 16 | 4 |
1 | 3 | 9 | 27 | 81 | 10 |
-1(R1) + R4 ---> R4
1 | -2 | 4 | -8 | 16 | 1 |
0 | 1 | -3 | 7 | -15 | 1 |
0 | 2 | -4 | 8 | -16 | 2 |
0 | 4 | 0 | 16 | 0 | 3 |
1 | 3 | 9 | 27 | 81 | 10 |
-1(R1) + R5 ---> R5
1 | -2 | 4 | -8 | 16 | 1 |
0 | 1 | -3 | 7 | -15 | 1 |
0 | 2 | -4 | 8 | -16 | 2 |
0 | 4 | 0 | 16 | 0 | 3 |
0 | 5 | 5 | 35 | 65 | 9 |
-2(R2) + R3 ---> R3
1 | -2 | 4 | -8 | 16 | 1 |
0 | 1 | -3 | 7 | -15 | 1 |
0 | 0 | 2 | -6 | 14 | 0 |
0 | 4 | 0 | 16 | 0 | 3 |
0 | 5 | 5 | 35 | 65 | 9 |
-4(R2) + R4 ---> R4
1 | -2 | 4 | -8 | 16 | 1 |
0 | 1 | -3 | 7 | -15 | 1 |
0 | 0 | 2 | -6 | 14 | 0 |
0 | 0 | 12 | -12 | 60 | -1 |
0 | 5 | 5 | 35 | 65 | 9 |
-5(R2) + R5 ---> R5
1 | -2 | 4 | -8 | 16 | 1 |
0 | 1 | -3 | 7 | -15 | 1 |
0 | 0 | 2 | -6 | 14 | 0 |
0 | 0 | 12 | -12 | 60 | -1 |
0 | 0 | 20 | 0 | 140 | 4 |
1/2(R3) ---> R3
1 | -2 | 4 | -8 | 16 | 1 |
0 | 1 | -3 | 7 | -15 | 1 |
0 | 0 | 1 | -3 | 7 | 0 |
0 | 0 | 12 | -12 | 60 | -1 |
0 | 0 | 20 | 0 | 140 | 4 |
-12(R3) + R4 ---> R4
1 | -2 | 4 | -8 | 16 | 1 |
0 | 1 | -3 | 7 | -15 | 1 |
0 | 0 | 1 | -3 | 7 | 0 |
0 | 0 | 0 | 24 | -24 | -1 |
0 | 0 | 20 | 0 | 140 | 4 |
-20(R3) + R5 ---> R5
1 | -2 | 4 | -8 | 16 | 1 |
0 | 1 | -3 | 7 | -15 | 1 |
0 | 0 | 1 | -3 | 7 | 0 |
0 | 0 | 0 | 24 | -24 | -1 |
0 | 0 | 0 | 60 | 0 | 4 |
1/24(R4)
1 | -2 | 4 | -8 | 16 | 1 |
0 | 1 | -3 | 7 | -15 | 1 |
0 | 0 | 1 | -3 | 7 | 0 |
0 | 0 | 0 | 1 | -1 | -1/24 |
0 | 0 | 0 | 60 | 0 | 4 |
-60(R4) + R5 ---> R5
1 | -2 | 4 | -8 | 16 | 1 |
0 | 1 | -3 | 7 | -15 | 1 |
0 | 0 | 1 | -3 | 7 | 0 |
0 | 0 | 0 | 1 | -1 | -1/24 |
0 | 0 | 0 | 0 | 60 | 13/2 |
1/60(R5) ---> R5
1 | -2 | 4 | -8 | 16 | 1 |
0 | 1 | -3 | 7 | -15 | 1 |
0 | 0 | 1 | -3 | 7 | 0 |
0 | 0 | 0 | 1 | -1 | -1/24 |
0 | 0 | 0 | 0 | 1 | 13/120 |
1(R5) + R4 ---> R4
1 | -2 | 4 | -8 | 16 | 1 |
0 | 1 | -3 | 7 | -15 | 1 |
0 | 0 | 1 | -3 | 7 | 0 |
0 | 0 | 0 | 1 | 0 | 1/15 |
0 | 0 | 0 | 0 | 1 | 13/120 |
-7(R5) + R3 ---> R3
1 | -2 | 4 | -8 | 16 | 1 |
0 | 1 | -3 | 7 | -15 | 1 |
0 | 0 | 1 | -3 | 0 | -91/120 |
0 | 0 | 0 | 1 | 0 | 1/15 |
0 | 0 | 0 | 0 | 1 | 13/120 |
15(R5) + R2 ---> R2
1 | -2 | 4 | -8 | 16 | 1 |
0 | 1 | -3 | 7 | 0 | 21/8 |
0 | 0 | 1 | -3 | 0 | -91/120 |
0 | 0 | 0 | 1 | 0 | 1/15 |
0 | 0 | 0 | 0 | 1 | 13/120 |
-16(R5) + R1 ---> R1
1 | -2 | 4 | -8 | 0 | -11/15 |
0 | 1 | -3 | 7 | 0 | 21/8 |
0 | 0 | 1 | -3 | 0 | -91/120 |
0 | 0 | 0 | 1 | 0 | 1/15 |
0 | 0 | 0 | 0 | 1 | 13/120 |
3(R4) + R3 ---> R3
1 | -2 | 4 | -8 | 0 | -11/15 |
0 | 1 | -3 | 7 | 0 | 21/8 |
0 | 0 | 1 | 0 | 0 | -67/120 |
0 | 0 | 0 | 1 | 0 | 1/15 |
0 | 0 | 0 | 0 | 1 | 13/120 |
-7(R4) + R2 ---> R2
1 | -2 | 4 | -8 | 0 | -11/15 |
0 | 1 | -3 | 0 | 0 | 259/120 |
0 | 0 | 1 | 0 | 0 | -67/120 |
0 | 0 | 0 | 1 | 0 | 1/15 |
0 | 0 | 0 | 0 | 1 | 13/120 |
8(R4) + R1 ---> R1
1 | -2 | 4 | 0 | 0 | -1/5 |
0 | 1 | -3 | 0 | 0 | 259/120 |
0 | 0 | 1 | 0 | 0 | -67/120 |
0 | 0 | 0 | 1 | 0 | 1/15 |
0 | 0 | 0 | 0 | 1 | 13/120 |
3(R3) + R2 ---> R2
1 | -2 | 4 | 0 | 0 | -1/5 |
0 | 1 | 0 | 0 | 0 | 29/60 |
0 | 0 | 1 | 0 | 0 | -67/120 |
0 | 0 | 0 | 1 | 0 | 1/15 |
0 | 0 | 0 | 0 | 1 | 13/120 |
-4(R3) + R1 ---> R1
1 | -2 | 0 | 0 | 0 | 61/30 |
0 | 1 | 0 | 0 | 0 | 29/60 |
0 | 0 | 1 | 0 | 0 | -67/120 |
0 | 0 | 0 | 1 | 0 | 1/15 |
0 | 0 | 0 | 0 | 1 | 13/120 |
-2(R2) + R1 ---> R1
1 | 0 | 0 | 0 | 0 | 3 |
0 | 1 | 0 | 0 | 0 | 29/60 |
0 | 0 | 1 | 0 | 0 | -67/120 |
0 | 0 | 0 | 1 | 0 | 1/15 |
0 | 0 | 0 | 0 | 1 | 13/120 |
No comments:
Post a Comment